
Noise effects on the health status in a dynamic failure model for living organisms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 3319

(http://iopscience.iop.org/1751-8121/40/13/002)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/13
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 3319–3328 doi:10.1088/1751-8113/40/13/002

Noise effects on the health status in a dynamic failure
model for living organisms

H Kang1, J Jo1, M Y Choi1,2, J Choi3 and B-G Yoon4

1 Department of Physics and Centre for Theoretical Physics, Seoul National University,
Seoul 151-747, Korea
2 Korea Institute for Advanced Study, Seoul 130-722, Korea
3 Department of Physics, Keimyung University, Daegu 704-701, Korea
4 Department of Physics, University of Ulsan, Ulsan 680-749, Korea

E-mail: bgyoon@ulsan.ac.kr

Received 25 September 2006, in final form 13 February 2007
Published 14 March 2007
Online at stacks.iop.org/JPhysA/40/3319

Abstract
We study internal and external noise effects on the healthy–unhealthy transition
and related phenomena in a dynamic failure model for living organisms. It is
found that internal noise makes the system weaker, leading to breakdown under
smaller stress. The discontinuous healthy–unhealthy transition in a system with
global load sharing below a critical point is naturally explained in terms of the
bistability for the health status. External noise present in constant stress gives
similar results; further, it induces resonance in response to periodic stress,
regardless of load transfer. In the case of local load sharing, such periodic
stress is revealed more hazardous than the constant stress.

PACS numbers: 05.40.−a, 87.10.+e, 87.18.Bb

1. Introduction

Living organisms constantly suffer stresses from the external world, which may lead them into
failures. Cells in an organism may become dead due to such an external load and the stress
carried by the dead cells should be transferred to other living cells. The resulting increase of
stress then induces additional deaths of the remaining cells and possibly failure of the whole
system. This kind of failure is common in many other systems, which is well described by
the fibre bundle models [1–3]. What makes living organisms distinctive, however, is that cells
may be regenerated (or healed); those effects have been considered in a recently proposed
dynamic failure model for living organisms [4].

The dynamic model displays characteristic time evolution that the system tends to resist
stress for rather a long time, followed by sudden failure with some fraction of cells surviving
when the external stress exceeds a certain value ft. This is called the ‘unhealthy’ state.
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Otherwise, there is no such breakdown and the system is regarded to be in the ‘healthy’
state. It has also been shown that the transition stress ft beyond which the system breaks
down increases rapidly as the regeneration or healing ability is increased. A discontinuous
transition between the two states may also take place as the system parameters are varied. With
these features, the model turns out to reproduce the characteristic time course of degenerative
disease progression such as diabetes [5], Alzheimer’s disease [6] and possibly AIDS [7].
When the system is subject to periodic stress, the average fraction of living cells or the ‘health
status’ exhibits oscillatory behaviour, appearing similar to the periodic synchronization [8]. In
particular the oscillation amplitude exhibits a peak as the healing parameter is varied, dubbed
healing resonance [9].

An important factor to affect the health of a living organism is the randomness present
in real situations, e.g., due to imperfections and random variations. This is usually taken into
consideration by resorting to a probabilistic description, which is controlled by the effective
‘temperature’; such internal noise tends to weaken the system (namely, in its presence ft in
general reduces). The system also exhibits a healthy–unhealthy transition as the temperature is
varied. In this paper, we elucidate this transition further by means of fixed point calculations as
well as direct Monte Carlo (MC) simulations. Further, we note that environmental influences
are likely to induce noise in the external stress, and accordingly a living organism may
experience the resulting external noise as well. It is shown that the external noise added in
constant external stress plays a similar role to the internal noise in the model, giving rise to the
healthy–unhealthy transition as the (external) noise level is varied. In particular, such noise
added in periodic stress has some interesting consequences: for peak values of the periodic
stress sufficiently smaller than ft, the health status oscillates in the healthy state at small
noise levels. As the noise level is raised, the overall health status becomes worse, while the
oscillation amplitude exhibits a peak, typical of resonance-like behaviour. Induced by the
(external) noise, this is appropriately called stochastic resonance [10] and observed in systems
with global load sharing (GLS) as well as with local load sharing (LLS). In the LLS case, the
peak is in general broader, and periodic stress, albeit weaker on the average, is more hazardous
than constant stress.

This paper consists of four sections: section 2 presents the dynamic failure model for
living organisms as well as the MC algorithms used in this work. Section 3 describes the
healthy–unhealthy transition as the (effective) temperature is varied. Discussed in section 4 are
external noise effects including resonance-like behaviour of the system under noisy periodic
stress. Finally a summary is given in section 5.

2. Dynamic failure model for living organisms

The basic ingredients of the dynamic failure model for a living organism consisting of N cells
are as follows [4, 9].

(i) N ≡ L2 cells are placed at sites of a square lattice of linear size L under periodic boundary
conditions. Each cell i is characterized by a spin variable si = −1(+1) according to
whether it is alive (dead), and subject to external stress fext.

(ii) Each cell i has its own tolerance hi , taken from a probability distribution g(h), beyond
which the cell may become dead. We take a Gaussian distribution for g(h) with mean h̄

and standard deviation σ .

(iii) For time interval [t, t + δt], cell i, chosen at random, becomes dead according to the
probability



Noise effects in a dynamic failure model 3321

pi(death) = δt

2tr

[
1 + tanh

Ei

T

]
, (1)

where Ei ≡ (ηi − hi)(1 − s̄)/2 is the local field felt by cell i at time t−td with the local
stress ηi ≡ fext +fexc given by the sum of the external stress fext and the excess stress fexc

transferred from dead cells and s̄ ≡ N−1 ∑
i si is the average spin of the system. Note

that we introduce the time delay td for the stress to be transferred from dead cells to living
ones and the refractory period tr setting the relaxation time of the cell. The (effective)
temperature T measures the width of the threshold region of the cells or the internal noise
level in the system.

(iv) The excess stress fexc is determined as follows: the stress carried by the dead cell (si = +1)

is transferred to intact (living) cells on the 3 × 3 square centred at the dead cell. Each
neighbour receives an equal amount of the excess load. If there is no living cell on the
first (3 × 3) square, the load is transferred to the living cells on the second (5 × 5) square,
and so on. If there is no living cell up to the tenth square of linear size 21, the load is
shared by all living cells in the system, each getting an equal amount.

(v) In step 3, if cell i is dead, it is regenerated (or healed) with the probability

pi(heal) = δt

t0
, (2)

where t0 denotes the time needed for a cell to be regenerated (or healed).
(vi) A regenerated cell gets its load from nearby living cells similarly to step 4: Each living

neighbour chosen gives an equal amount of the load to the regenerated cell, in such a way
that the load on the regenerated cell is equal to the average load of the chosen cells before
the load transfer.

(vii) Measure the average fraction of living cells or the health status x̄, which completes one
time step.

There are three different time scales in the model: the time delay td , the refractory
period tr and the regeneration time t0. Hereafter we rescale time in units of td and introduce
the relaxation time τ ≡ tr/td and the healing parameter a ≡ tr/t0, which measures the
regeneration probability during the relaxation time.

We point out that step 4 or 6 is just one of many possible ways to realize LLS. We have
thus considered several other realizations of LLS, only to find that qualitative behaviours of
the system do not change. For a system with GLS, the load of the failed cell is transferred
equally to all remaining living cells. In the latter case the equation of motion for the average
living fraction xk ≡ (1 − 〈sk〉)/2 for the kth cell takes the simple form [4]

τ
d

dt
xk(t) = a −

(
1

2
+ a

)
xk(t) − 1

2
xk(t) tanh[(fext−hkx̄(t−1))/T ]. (3)

The stationary solutions of equation (3), upon averaging over the tolerance distribution g(h),
leads to the self-consistency equation for the average (stationary) fraction of living cells or the
health status x̄:

x̄ =
∫

dh g(h)
2a

(1 + 2a) + tanh[(fext−hx̄)/T ]
. (4)

The results in this work, obtained from MC simulations and from equation (3), are average
values over 20 initial configurations with τ = 5 and time step �t = 0.5, mostly in a system
of size L = 64. For the Gaussian distribution of tolerance g(h), we set h̄ = 1, and σ = 0.2.
These parameter values have also been varied, only to give no qualitative difference.
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Figure 1. (a) Health status x̄ versus (constant) stress f in a system with GLS, for the healing
parameter a = 0.2 and temperature T = 0.2. Symbols represent the data obtained from MC
simulations with the number of cells N = 4096; the line represents the fixed-point solutions of
equation (4). (b) Transition stress ft versus temperature T for several values of a shown in the
legend. Data points are obtained by integrating equation (3) with the number of cells N = 4096
and lines represent the fixed-point curves obtained from equation (4).

3. Internal noise and healthy–unhealthy transition

The dynamic failure model described in the previous section is known to undergo a
(discontinuous) healthy–unhealthy transition depending on the external stress fext, healing
parameter a and temperature T [4, 11]. We re-examine this transition in more detail by
means of fixed points given by equation (4) and present the results for systems with GLS; the
behaviour of the LLS systems is qualitatively similar [11].

We first consider the system under constant stress fext = f and examine the behaviour
as a function of f . Figure 1(a) shows the health status x̄, i.e., the average fraction of living
cells in the stationary state, versus stress f in the GLS system with healing parameter a = 0.2
and temperature T = 0.2. The line represents the fixed-point solutions of equation (4) while
symbols denote the data obtained from MC simulations for the system size L = 64. Note
that there exists a bistable region in some range of f , in which there are two stable and
one unstable fixed points. In direct MC simulations, however, only uppermost solutions are
realized, as seen from the data points in figure 1(a), since all cells are taken to be alive
initially. From this fixed-point line, we can determine the transition stress ft beyond which
the system breaks down and show in figure 1(b) that ft reduces with the temperature T. As
the healing parameter a or the temperature T is raised the bistable region shrinks to disappear:
The discontinuous transition disappears and x̄ decreases gradually with f . For comparison,
we have also integrated equation (3) numerically and plot the obtained data points represented
by symbols in figure 1(b); observed is perfect agreement with the lines obtained from the
fixed-point analysis.

Next we describe the transition as the temperature T is varied. Figure 2(a) shows the
health status x̄ versus temperature T, obtained from equation (3) for a GLS system with the
healing parameter a = 0 under several values of the external stress f . When there is no
healing, the internal noise, however small, may lead the system to breakdown, even for the
stress smaller than the transition stress at T = 0. Recall that a = 0 in equation (4) leads to
x̄ = 0. At a finite value of a, the transition with T may also be understood in terms of the
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Figure 2. Health status x̄ versus temperature T in the GLS system with the healing parameter a =
(a) 0 and (b) 0.2 for several values of the external stress f shown in the legends. Symbols represent
the data obtained from integration of equation (3) with the number of cells N = 4096; solid lines
in (a) are guides to the eye whereas dotted lines in (b) depict fixed-point solutions of equation (4).
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Figure 3. Transition temperature Tt versus healing parameter a for several values of external stress
f shown in the legend. Other parameters of the system are the same as those in figure 1. Symbols
denote the data obtained from integrating equation (3); lines are from equation (4).

fixed-point solutions of equation (4). The dotted lines in figure 2(b) show x̄ versus temperature
T for a = 0.2. Here the bistable region is again observed for larger values of stress, and the
transition can be understood as before. For stress smaller than a critical value, the health
status changes continuously with T (see the data for f = 0.1 in figure 2(b)), implying that the
transition disappears.

Before moving on to the next issue, we probe the behaviour as the healing parameter a
is varied and present in figure 3 the transition temperature Tt versus a for several values of
stress f , in the same system as before. The lines represent fixed-point solutions whereas the
symbols are obtained from equation (3). The transition temperature is shown to increase with
the healing parameter or the regeneration probability, as expected. Here the healthy–unhealthy
transition disappears again for a above the critical value.
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Figure 4. Health status x̄ versus (external) noise level D in the same system as figure 1. The
system suffers the stress given by equation (5) with � = 0 at T = 0. Symbols represent the data
obtained from MC simulations and lines are guides to the eye.

4. External noise and resonance

We now discuss the effects of random noise directly added to the external stress. Specifically
we consider the stress of the form:

fext(t) = f0

2
(sin �t + 1) + γ (t), (5)

where � is the stress frequency and γ (t) represents Gaussian white noise characterized by
the average 〈γ (t)〉 = 0 and correlations 〈γ (t)γ (t + τ)〉 = 2Dδ(τ). Via MC simulations, we
compute the health status x̄ for various values of the noise level D.

We first consider the case � = 0, i.e., constant stress f = f0/2 in the presence of noise
of strength D, and show in figure 4 the average stationary fraction x̄ versus D for a = 0.2 and
several values of f . Note that the behaviour of x̄s is remarkably similar to that in figure 2(b),
except for that the logarithm of D plays the role of the temperature T. We therefore conclude
that the effects of external noise is qualitatively the same as those of internal noise and
henceforth consider only the case of T = 0 to study the effects of external noise.

When the external stress is periodic (� �= 0) in the absence of any noise (T = D = 0),
the system is known to exhibit interesting time evolution [9]: without healing, the health status
x̄ either decays stepwise to zero or approach a constant value far from zero, depending on
the peak value f0. When the healing parameter a is raised from zero, x̄ exhibits oscillatory
behaviour, similar to periodic synchronization. Further, as a is increased, the power spectrum
at the stress frequency grows at first and then reduces, manifesting resonance-like behaviour
hence termed healing resonance.

Similar phenomena also emerge when noise is added and the temperature T or the noise
level D is varied. Here we only present effects of the latter while keeping T = 0, since effects
of T and D are qualitatively the same. Figure 5 shows the time evolution of the health status
x̄ for several values of the noise level D. The system is under the sinusoidal stress with noise,
given by equation (5) with period T ≡ 2π/� = 128 and the peak stress (a) f0 = 0.6 and
(b) f0 = 0.7. We recall that under constant external stress the transition stress is given by
ft(T = 0) ≈ 0.69 for a = 0.2. When the (external) noise is sufficiently small, the health
status in the stationary state oscillates within the healthy/unhealthy region if the peak stress
f0 is smaller/larger than ft. As the noise level D is increased, oscillations of the health status
moves to the unhealthy region from the healthy one. This happens even when the peak stress
f0 is somewhat smaller than ft. Further, in this case, the oscillation amplitude first grows
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Figure 5. Time evolution of the health status x̄ (with time t in units of the delay time) for several
values of the noise level D. The organism suffers the sinusoidal stress in the presence of noise,
given by equation (5), with period T = 128 and peak stress f0 = (a) 0.6 and (b) 0.7. There is no
internal noise (T = 0) while other parameters of the system are the same as those for figure 1.
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Figure 6. Power spectrum (a) P(0) at zero frequency and (b) P(�) at the driving frequency versus
noise level D in the same systems as figure 5. Error bars denote standard deviations.

with D, then decreases. This may be demonstrated more clearly by the power spectrum of
x̄(t) versus noise level D. Shown in figure 6 are thus the power spectrum (a) P(0) at zero
frequency and (b) P(�) at the driving frequency. If the peak stress f0 is larger than ft, the
health status of the system oscillates always in the unhealthy region: P(0) remains more or
less constant near zero whereas P(�) gradually reduces with the noise level D. When f0

is smaller than ft, on the other hand, P(0) decreases rather sharply with D, similar to the
healthy–unhealthy transition discussed in the previous section. In addition, as D is varied,
P(�) exhibits a noticeable peak. This behaviour, typical of resonance, is induced by noise
and thus appropriate to call stochastic resonance [10].
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Figure 7. Time evolution of the health status x̄ in an LLS system for several values of the noise
level D shown in the legend. The stress is given by equation (5), with the peak stress f0 = 0.5 and
period T = 128. Other parameters of the system are the same as those in figure 5.
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Figure 8. Power spectrum (a) P(0) at zero frequency and (b) P(�) at the driving frequency versus
the peak value f0 of the stress, in the same system as figure 7.

Finally, we investigate the LLS system under periodic stress, which exhibits another
characteristic behaviour. Under constant external stress, the LLS system is in general weaker
than the GLS one for the same parameters. Under periodic stress, the LLS system tends to
become less healthier, compared with the case of constant stress given by the peak stress f0.
This happens even when f0 is smaller than the transition stress ft. Figure 7 shows the time
evolution of x̄ in the LLS system under periodic stress for several values of the noise level D
for f0 = 0.5, T = 128 and T = 0, with other parameters the same as those in figure 1. We
point out that f0 = 0.5 is smaller than ft ≈ 0.58; nonetheless breakdown still occurs after a
long time, even in the absence of external noise (D = 0). This is in contrast with the GLS
system which never breaks down at this value of stress without noise (the stationary value of
x̄ is larger than 0.9). To determine the role of f0 in the LLS system, we display in figure 8
the power spectrum (a) P(0) at zero frequency and (b) P(�) at the stress frequency versus
the peak stress f0, for the system in figure 7. It is shown that P(0) decreases rather abruptly
near f0 ≈ 0.32, which is much smaller than ft in the case of constant stress. At the same
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Figure 9. Power spectrum (a) P(0) at zero frequency and (b) P(�) at the driving frequency versus
noise level D, in the same system as figure 7 and in the system under periodic stress with a smaller
peak f0 = 0.31.

time P(�) shows a sharp increase and reaches a peak at f0 ≈ 0.71. The peak in P(�) is also
observed in the GLS system (data not shown).

It is both intriguing and interesting that in the LLS system the periodic stress with the
peak stress f0 could be more hazardous than the constant stress of the same f0. This seems to
reflect that the stress per intact cell after breakdown is not smaller than the transition stress and
that state maybe metastable which is accessible only by the LLS system under periodic stress,
with regeneration probabilities. The origin is, however, not known at this stage; presumably,
it results from an interplay of the delay time, the healing parameter, the stress period, and
disorder or noise in the LLS system.

The external noise has similar effects on the health of the LLS system. To see this, we
have varied the noise level D in the LLS system under periodic stress, with two values of
f0 = 0.31 and 0.50. Figure 9 displays the power spectrum (a) P(0) at zero frequency and
(b) P(�) at the driving frequency versus D, for both values of f0. When f0 = 0.50, the
system breaks down quickly and oscillates in the unhealthy state. The oscillation amplitude
or P(�) is rather insensitive to D up to a certain value, then tends to reduce. For f0 = 0.31,
on the other hand, as D is increased, P(0) drops to the stationary value quickly while P(�)

exhibits a resonance-like peak similar to the GLS system, although the peak is broader and
less pronounced.

5. Summary

We have studied noise effects on the behaviour of the failure model for a living organism. The
internal noise, resulting from, e.g., imperfections, has been taken into account by introducing
appropriate probabilities. It has been shown that the health status of the system, defined
to be the average fraction of intact cells, is determined by the external stress, the healing
parameter, and the effective temperature measuring the internal noise level, and describes
the healthy–unhealthy transition. In a system with global load sharing, the nature of the
phase transition has been probed by means of the fixed-point solutions of the self-consistency
equation for the health status. At given temperature, there are bistable regions in the health
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status of the organism in some range of external stress, manifestly explaining the existence of
the discontinuous transition as the stress is varied. The transition temperature has been found
to increase with the healing parameter. Also shown is the existence of the critical temperature
and healing parameter, beyond which the discontinuous transition disappears and the health
status varies in a continuous manner.

We have also studied effects of external noise directly present in the external stress. It
has been shown that the role of such noise in stress is qualitatively the same as that of the
internal one: Namely, the system undergoes a healthy–unhealthy transition, either as the
(effective) temperature is varied or as the (external) noise level is varied at zero temperature.
The transition disappears and the health status experiences continuous change when the stress
is smaller and/or the healing parameter is larger than the critical value. When the noise is
added to periodic stress, the average fraction of intact cells oscillates in time. In particular,
the oscillation amplitude grows at low noise levels, then reduces as the noise level is raised
further, thus displaying a peak; this may be interpreted as the stochastic resonance, regardless
of the load transfer mechanism. It is also observed that the local load sharing system is more
vulnerable to the periodic stress than the constant stress.
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